推进技术 ›› 2019, Vol. 40 ›› Issue (6): 1419-1425.DOI: 10.13675/j. cnki. tjjs. 180251
谭建国
摘要: 为了明晰超临界裂解煤油的流量特性,实现对超临界裂解煤油流量的准确预测,采用实验方法测量了较大压力和温度范围内超临界裂解煤油的流量,对超临界裂解煤油流量特性进行了分析,基于多元线性回归方法,多元多项式回归方法和深度学习方法分别建立了超临界裂解煤油流量预测模型并给出了模型评估指标。研究结果表明,超临界裂解煤油流量主要与压降和温度有关,并且流量与压降和温度之间存在着很强的非线性关系;基于深度学习方法的深度神经网络模型性能优于多元线性回归模型和多元多项式回归模型,能够更加准确地刻画超临界裂解煤油的流量特性,其平均相对预测误差在1.1%左右,最大相对预测误差在7%以下。